
Deposition of inertia-dominated particles inside a
turbulent boundary layer

Mansoo Shin, D.S. Kim, Jin W. Lee *

Department of Mechanical Engineering, Pohang University of Science and Technology, Hyoja 31, Pohang,

Kyungbuk 790-784, South Korea

Received 15 October 2001; received in revised form 30 March 2003

Abstract

Non-equilibrium mechanism in the transport of inertia-dominated particles was explained in the

problem of particle deposition inside a turbulent boundary layer. Due to the finite inertia of particles and

mean shearing of the carrier flows, the transport of inertia-dominated particles inside a turbulent boundary

layer is seriously affected by a non-equilibrium memory effect, making the particle retain the memory of its

earlier state after spending a characteristic time scale related with the turbulent deposition process. A non-

equilibrium constitutive equation for the particle Reynolds stress was derived from the stochastic differ-
ential equation of motion of particles governed by the Stokes drag and shear-induced lift forces. This new

constitutive model was then applied to the problem of particle deposition in the fully developed turbulent

channel flows. It was theoretically predicted that for inertia-dominated particles with sþp > 10 the distri-

bution of wallward drift velocity in the vicinity of the wall deviates considerably from the equilibrium

profile due to an additional turbophoresis, which is generated by the non-equilibrium part of the wall-

normal particle Reynolds stress depending on the particle inertia and mean shearing of the carrier flow.

And it was also predicted that, when the shear-induced lift force induces a large discrepancy between the

particle and fluid motions, the turbulent particle diffusivity might be considerably reduced by the effect of
crossing trajectories, resulting in the decrease of diffusive deposition of particles. From this fact it could be

postulated that although the shear-induced lift force reduces the diffusive flux of particles, the increase of

non-equilibrium wallward drift due to the lift force overwhelms the reduction of diffusive flux and, even-

tually, enhances the particle deposition to the wall. The predicted deposition velocities as a function of

particle relaxation time were in excellent agreement with existing numerical and experimental data.
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1. Introduction

The problem of the turbulent deposition of small particles is a representative topic in the area of
developing a transport theory of particles. In many cases, to avoid the complications, the re-
searchers has assumed that the suspension of particles is sufficiently dilute so that there is no
collision between particles and the particles are not able to modify the surrounding turbulence.
Although this one-way coupling problem is much simpler than the two-way coupling, there are
still many unsolved problems in the one-way coupled turbulent dispersion in inhomogeneous
flows. In an Eulerian description of particle deposition in turbulent flows, the primary transport
quantity is the particle flux, Jw, which is usually expressed in the following form:

Jw ¼
"
� �cc�tty þ ðeB þ epÞ

o�cc
oy

#
w

; ð1Þ

where the over-bar denotes a probability–density-weighted average over all possible particle ve-
locities, c the particle concentration (number density), ty the wall-normal particle velocity, eB the
particle Brownian diffusivity, and ep the particle turbulent diffusivity. The first and the second
term on the right-hand side of Eq. (1) represent the convective and the diffusive flux, respectively.
And the accuracy of predicted particle deposition or transport depends on the determination of
mean particle migration velocity and particle turbulent diffusivity. Both quantities are sensitively
dependent on the characteristics of particle fluctuation, which is evidently different from those of
the fluid. Such difference between fluid and particle is caused mainly by the inertia of particles,
which is usually represented by the particle relaxation time sp (� 1=b) defined by

sþp ¼
qpd

2
p

18qfm
u�

2

m

 !
; ð2Þ

where qp and qf are the material densities of the particle and fluid, respectively, and dp the particle
diameter. The superscript �+� denotes the non-dimensionalization with wall units such as the
friction velocity, u�, and the kinematic viscosity, m, of the carrier fluid.

Experimental data on the deposition of inertia-dominated particles in turbulent boundary
layers, of which mass loading is generally set to be low so as to prevent the particles from
modifying the surrounding flow field in most cases, show two distinct features of the effect of
particle inertia on the dimensionless deposition velocity V þ

dep defined by

V þ
dep ¼

Jw
cm

1

u�

� �
; ð3Þ

where cm is the average particle concentration over the cross-sectional area at position x. First, in
the diffusion–impaction regime (1 < sþp < 30), particles acquire an impacting momentum toward
the wall through interactions with turbulent eddies, making deposition velocity increase with sþp
dramatically by several orders of magnitude. Second, in the inertia-moderated regime (sþp > 30),
the excessive particle inertia prevents particles from acquiring sufficient impacting momentum
from the surrounding turbulent eddies, so that the deposition velocity decreases with sþp . This
decline of particle deposition velocity is called the �roll-off in V þ

dep�. These two features are usually
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used as the criteria for theoretical models on the transport of particles dispersed in turbulent
flows.

The first major deposition model is the stop-distance or free-flight model (Friedlander and
Johnstone, 1957; Davies, 1966; Beal, 1968; Liu and Ilori, 1974). In order to match the model
predictions with existing experimental data, however, unrealistically high level of fluctuating ve-
locity of the carrier phase need to be used at the local position of a stop distance. Also a large
number of arbitrary manipulations were introduced without proper justification. Even with the
manipulations it was not explained satisfactorily how particles acquire the necessary wallward
momentum from the low level of turbulence at the stop-distance.

Liu and Ilori (1974) recognized that the contradiction in the free-flight model might be caused
mainly by the non-equilibrium characteristics of particles with finite inertia, and proposed a new
expression for particle turbulent diffusivity, adding a term to account for the enhanced deposition
by inertia:

ep ¼ mt þ hu02y isp; ð4Þ

where mt is the turbulent eddy viscosity of the carrier turbulence and the angle-bracket denotes
the ensemble average over all realizations of the carrier flow. The model yielded a reasonable
agreement with experimental data in an intermediate range of particle relaxation time, but not for
particles of high inertia. The poor agreement at high inertia is due primarily to the particle dif-
fusivity expression, where ep increases indefinitely with particle relaxation time and does not re-
flect the difference between the particle and fluid RMS velocity. Experiments show that particle
inertia does not simply manifest itself as an increased diffusivity in the boundary layer (Kallio and
Reeks, 1989).

Papavergos and Hedley (1984) supposed that roll-off in V þ
dep beyond about sþp ¼ 30 is mainly

due to particle rebound or reentrainment. However, not only theoretical works of Reeks and
Skyrme (1976) and Reeks (1982, 1983) but also numerical experiment of Kallio and Reeks (1989)
demonstrated that the roll-off in V þ

dep is directly attributable to the reduction of fluctuating in-
tensity for large particles. This is easily conceivable from the following expression for the wall-
normal particle fluctuation in equilibrium with surrounding turbulence (Reeks, 1977),

t02y ð1Þ ¼ sL
sp þ sL

hu02y i; ð5Þ

where sL is the integral time scale associated with the Lagrangian autocorrelation function of
turbulent velocities of the carrier phase and �1� denotes a local equilibrium. Reeks (1982, 1983)
proposed a theory that a particle experiences a force in the direction of decreasing particle fluc-
tuating intensity, and called this mechanism the �turbophoresis�:

Ft ¼ � d

dy
t02y : ð6Þ

Turbophoresis was shown to induce a wallward particle drift motion, and predictions using a
modified gradient-transport concept yielded more reasonable deposition velocity results.

Based on the above equilibrium theory of particle turbulence, Guha (1997) and Young and
Leeming (1997) proposed the unified deposition model. Transport equations for the mean par-
ticle momentum and concentration were derived in a semi-heuristic way and the second-order

M. Shin et al. / International Journal of Multiphase Flow 29 (2003) 893–926 895



fluctuating moment terms were closed by the constitutive relations based on the traditional
Boussinesq hypothesis. For instance, the particle Reynolds shear stress term was closed by ap-
plying a simple gradient model based on the Boussinesq hypothesis and the wall-normal stress
term by using Eq. (5). The deposition velocity predicted by this model showed a good agreement
with experimental measurements over all deposition regimes (diffusional-deposition, diffusion–
impaction, and inertia-moderated regimes) in a qualitative sense, but not in the quantitative sense.

As mentioned by Reeks (1993), however, there are so many controversies in closing the particle
Reynolds stress using the Boussinesq hypothesis. And it has been pointed out repeatedly that the
near-wall profiles of the wall-normal RMS velocity of large particles might be quite different from
the profiles computed under the assumption of equilibrium between particles and the local fluid
turbulence (Kallio and Reeks, 1989; Kulick et al., 1994; Rouson et al., 1994) and also that it is
necessary to consider the non-equilibrium behavior of inertia-dominated particles in the closure of
particle Reynolds stress terms in order to predict the inertial deposition of particles more accu-
rately even in a quantitative sense.

Recently, Shin and Lee (2001) proposed the following non-equilibrium constitutive relation for
the particle wall-normal stress in fully developed turbulent channel flows, which holds good in the
absence of the lift force,

t02y ¼ 1

�
� sb�tty

d

dy

�
t02y ð1Þ; ð7Þ

where sb denotes a measure of relaxation time scale required to reach a local equilibrium state of
the particle Reynolds stress. The relaxation time scale sb reflects the dependence of the degree of
non-equilibrium on the particle inertia, and is expressed as

sb � e�2=Sts

1� e�2=Sts
s; ð8Þ

where Sts (� sp=s) is a Stokes number defined as the ratio of the particle relaxation time, sp, to a
characteristic time scale for the turbulence–particle interaction in the macroscopic point of view,
s, called an intermediate diffusion time scale (Shin and Lee, 2001). If the particle time scale sp
becomes comparable to or greater than s (Sts J 1), the particle Reynolds stress will be in the non-
equilibrium state, and a time period sb will be required to reach the local equilibrium state given
by Eq. (5).

With the introduction of the rather simple non-equilibrium constitutive equation, Shin and Lee
(2001) gave much improved predictions for the deposition velocity, showing a good agreement
with the Kallio and Reeks� (1989) numerical data for inertia-dominated particles (sþp > 30) in the
absence of the shear-induced lift force.

For inertia-dominated particles the lift force plays an important role in the deposition process.
So this paper is an extension of the authors� preceding work (Shin and Lee, 2001), aiming at a
more precise theory for the non-equilibrium particle deposition in fully developed turbulent
channel flows. The expression for the particle Reynolds stress is extended to include the effect of
shear-induced lift force on the particle motion in an unbounded 2-D simple shear flow. The de-
position rates of turbulent particles will be predicted from the particle momentum equation as a
function of particle relaxation time both with and without the lift force effect. The prediction
results will be compared with the existing numerical and experimental data, and the validity of the
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present theory will be tested extensively. Throughout this paper it will be assumed that the particle
size and concentration are sufficiently small and low so that there is no collision between particles
and the surrounding flow field is not modified by the presence of particles.

2. Governing equations for the particle deposition in a turbulent boundary layer

This section is devoted mainly to a brief summary of the existing unified deposition theory. And
also introduced are the slight modifications in the expressions for the particle concentration
boundary condition and particle turbulent diffusivity for the inertia-dominated particles. Espe-
cially, in the presence of lift force, the particle diffusivity will be modeled to take into account for
the effect of relative motion of particles to the fluid on the near-wall distribution of particle
diffusivity. Primarily concerned is the flow of solid particles suspended in a fully developed tur-
bulent channel flow. Particles are assumed spherical and mono-dispersed with diameter dp. It is
also assumed that fluid motion is unaffected by the presence of particles and that particle–particle
interactions are negligible.

2.1. Particle momentum equations

Mean particle momentum equations in the transverse (y) and streamwise (x) directions for 2-D
fully developed turbulent channel flows can be written in dimensionless forms as (Guha, 1997;
Young and Leeming, 1997)

�ttþy
d�ttþy
dyþ

¼ � d

dyþ
t0þ2
y � Rep

24

CD

sþp
�ttþy þ cþðhuþx i � �ttþx Þ; ð9Þ

�ttþy
d�ttþx
dyþ

¼ d

dyþ
t0þx t0þy þ Rep

24

CD

sþp
ðhuþx i � �ttþx Þ; ð10Þ

where Rep ¼ dpjhui � �vvj=m is the particle Reynolds number, CD the particle drag coefficient which
is usually given by an empirical correlation in Rep (see Appendix A), and c the Saffman lift force
coefficient, c � 3:08ðdpqp=qfÞ

�1ðmohuxi=oyÞ1=2.
The second terms on the right-hand side of Eqs. (9) and (10) are the viscous drag terms and the

third term in Eq. (9) the lift force term. In order to close the above system of equations, the
second-order statistical moment terms, the so-called particle Reynolds stresses, on the right-hand
side of Eqs. (9) and (10) have to be modeled by a proper constitutive relationship. Especially, the
transverse normal component of the particle Reynolds stress plays an important role in the
particle deposition mechanism in such a way that particles acquire a drift velocity in the direction
of decreased fluctuation intensity. In general, an accurate representation of these terms are dif-
ficult because particle turbulence properties are different from those of carrier flow due to particle
inertia and particle drift relative to the surrounding fluid. Inside the turbulent boundary layers,
inertia-dominated particles may drift into regions of quite different turbulence levels while re-
taining a partial memory of their earlier motion, part of the mean and fluctuating velocities at
previous times. This is called �the non-equilibrium memory effect�. In all the previous studies this
memory effect was ignored, and it has been assumed that the fluctuating intensity of the particles
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depends only on the local value of fluctuating intensity of the surrounding fluid turbulence just as
if particles were always in equilibrium in a homogeneous turbulent flow. Shin and Lee (2001)
proposed the first non-equilibrium constitutive relation in a form given in Eq. (7). t0xt

0
y was

modeled by a gradient diffusion model with turbulent eddy viscosity equal to that of the carrier
phase. Briefly summarized in Table 1 are the existing constitutive equations for t02y and t0xt

0
y. In

Section 3, improved non-equilibrium constitutive equations will be formulated with the lift force
effect included.

2.2. Particle concentration equation

In the fully developed conditions, the concentration profile and the particle mass flux can be
normalized by the mean concentration, and the normalized profiles become independent of xþ:

/ðyþÞ ¼ �ccðxþ; yþÞ
cmðxþÞ

: ð11Þ

The normalized concentration equation and the boundary conditions can be expressed as (Young
and Leeming, 1997)

�j�ttþx / þ d

dyþ
�ttþy / ¼ d

dyþ
ðeþB
�

þ eþp Þ
d/
dyþ

�
; ð12Þ

V þ
dep �

�
� �ttþy / þ ðeþB þ eþp Þ

d/
dyþ

�
yþ¼dþp =2

¼ 1

2
�ttþy /

1ffiffiffi
p

p
n
e�n2


�
� erfcðnÞ

��
yþ¼dþp =2

; ð13Þ

d/
dyþ

����
yþ¼hþ

¼ 0; ð14Þ

where j is a constant related with the deposition velocity,

j �
V þ
dep

h�ttþx i/
ð15Þ

in which h�i/ denotes a weighted average based on the normalized concentration profile / over the
domain of dp=2 < y < h. In Eq. (12) eB ¼ RpTpsp and Rp ¼ kB=mp, where kB is the Boltzmann
constant and mp ¼ pd3

pqp=6 the particle mass. Since eB is inversely proportional to particle di-
ameter, it becomes smaller and smaller than ep as the particle size increases.

Though the basic equations (12) and (13) are correct, the choice of n in Eq. (13) needs to be
modified. Eq. (13) is the near-wall boundary condition which was derived originally by Young

Table 1

Existing constitutive equations

Transverse normal component, t02y Shear component, t0xt
0
y

Guha (1997); Young and Leeming (1997) sL
spþsL

hu02y i �mt
d�ttx
dy

Shin and Lee (2001) 1� sb�tty d
dy


 �
sL

spþsL
hu02y i �mt

d�ttx
dy

898 M. Shin et al. / International Journal of Multiphase Flow 29 (2003) 893–926



and Leeming (1997) from a simple kinetic approach based on a Maxwellian distribution of
particle velocity, with a mean of �tty and a variance of RpT :

n ¼ �tty=
ffiffiffiffiffiffiffiffiffiffiffi
2RpT

p
: ð16Þ

This boundary condition is justified only when the particle fluctuation comes from thermal
fluctuation alone. However, the wall boundary condition is actually applied at a distance of one
particle radius from the wall, where the turbulence intensity is not zero. So it is necessary to
modify the boundary condition given in Eq. (16) in such a way that particle fluctuation due to
turbulent flow as well as thermal fluctuation is considered in the definition of the variance. These
two different fluctuations may occur with quite different time scales from each other, so that their
fluctuating motions can be assumed statistically independent of each other. Furthermore, if we
simply assume the Gaussian distribution of particle fluctuating velocities in the near-wall region
for the lack of any better information, the variance of particle velocity can be rewritten as

r2 ¼ RpT þ t02y : ð17Þ

Now n defined in Eq. (16) is changed into

n ¼ �tty
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRpT þ t02y Þ

q�
: ð18Þ

This correction has an important meaning in the mechanism of turbulent particle deposition. The
non-equilibrium n in Eq. (18) is always smaller than the equilibrium n in Eq. (16), and Eq. (13)
shows that the non-equilibrium deposition velocity always becomes larger than the equilibrium
deposition velocity. So this correction partially explains the finding that the non-equilibrium
memory effect enhances particle deposition through the enhanced fluctuating intensity of particles
in the near-wall region (Shin and Lee, 2001).

2.3. Model of particle turbulent diffusivity

It has been assumed extensively that, inside the fully developed turbulent boundary layers, the
particle diffusivity is equal to the turbulent eddy viscosity of the carrier phase (Friedlander and
Johnstone, 1957; Guha, 1997; Young and Leeming, 1997; Shin and Lee, 2001):

ep ¼ mt: ð19Þ
This assumption is valid when particle motion deviates only a little bit from fluid motion. When
the particle drift relative to the fluid is large, the particle diffusivity can be much different from mt
by the effect of crossing trajectories, which is the case for large particles in the near wall region.
Inside the turbulent boundary layer, the inclusion of shear-induced lift force in the particle
equation of motion brings about a considerably large relative motion of inertia-dominated par-
ticles to the carrier fluid. For this reason, the simple modification of ep is considered for the case of
the inclusion of lift force, in such a way that ep probably becomes smaller than mt due to �the effect
of crossing trajectories�.

Unfortunately it is difficult to analyze the turbulent dispersion of particles in the presence of
mean relative drift even for simple turbulence conditions, and most of the models for the dis-
persion of turbulent particles and the particle diffusivity have been derived through ad hoc

M. Shin et al. / International Journal of Multiphase Flow 29 (2003) 893–926 899



assumptions (Tchen, 1947; Friedlander, 1957; Csanady, 1963; Chao, 1964; Peskin, 1971; Meek
and Jones, 1974; Reeks, 1977). Following the dispersion theory of Csanady (1963), the particle
turbulent diffusivity in the presence of the crossing trajectory effect can be expressed as

~eep ¼ mt 1

2
64 þ lL

lE

Dtffiffiffiffiffi
t02y

q
0
B@

1
CA

23
75

�1=2

; ð20Þ

where Dt � j�vv� huij is the particle drift velocity relative to the surrounding fluid. lL and lE denote
the Lagrangian integral length scale and the Eulerian length scale of the flow turbulence, re-
spectively, usually obtained from the following relationships (Hinze, 1975):

lL � hu02y i
1=2sL; ð21Þ

lE � 1:25lL: ð22Þ
Eq. (20) is coupled with the particle momentum equation because the drift velocity and the
particle RMS velocity are implicitly dependent on ~eep. In order to simplify the problem, it is as-
sumed here that the particle fluctuations are in equilibrium with the surrounding turbulence,
which is assumed to be locally homogeneous and stationary. Then the ~eep can be finally expressed
as

~eep ¼ mt 1

2
64 þ sp þ sL

sL

lL
lE

Dtffiffiffiffiffiffiffiffiffi
hu02y i

q
0
B@

1
CA

23
75

�1=2

: ð23Þ

Eq. (23) implies that, as the particle inertia and the particle drift velocity increase, the particle
diffusivity decreases due to the effect of crossing trajectories.

3. Non-equilibrium closure of the particle Reynolds stress

3.1. Constitutive equation for the particle Reynolds stress

When solid particles are dilutely suspended in turbulent shear flows and their motion is gov-
erned mainly by both the Stokes drag and the shear-induced lift force (Saffman, 1965), the
equation of motion in the form of Langevin equation can be written as

dv

dt
¼ �B � vþ hfi þ f 0; ð24Þ

where hfi and f 0 denote the mean and the fluctuating aerodynamic forces acting on the particle
along its trajectory, respectively. As a good approximation, these forces can be expressed as

hfi ¼ B � hui; ð25Þ
f 0 ¼ B � u0: ð26Þ

The components of the friction coefficient tensor B can be written as
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Bij ¼ bdij þ cij; ð27Þ

where dij is the Kronecker delta tensor. b and cij are the Stokes drag and Saffman lift coefficients,
respectively, and are usually defined as follows:

b ¼ 18m
Sd2

p

; ð28Þ

cij ¼
k
ffiffiffi
m

p

Sdpðdf : dfÞ1=4
df;ij; ð29Þ

where k ¼ 2:594, S the density ratio of solid particle to carrier fluid and df;ij the coefficient of
deformation tensor of the fluid flow. The deformation tensor is again defined as

df ¼
1

2
ðsf þ sTf Þ; ð30Þ

where the superscript �T� indicates the transpose of tensor and sf the shear rate tensor whose
components are defined as

sf;ij � ohuii=oxj: ð31Þ

Now the Langevin equation of motion for the particles is stochastically averaged and the results
are expressed in terms of the following statistical moments (Reeks, 1993):

lij � htif 0
j i; ð32Þ

kij � hxif 0
j i; ð33Þ

eij � ht0ix0ji ffi B�1
ik ðt0kt0j þ kjkÞ; ð34Þ

where lij, kij and eij are defined from the fluid-to-particle interactions along the particle trajec-
tories. Then the long-time equilibrium particle Reynolds stress is obtained as follows:

titjð1Þ ¼ 1

2b
ðHij þ HjiÞð1Þ; ð35Þ

Hij � lij þ cikkkj þ ½ðbdik þ cikÞðsp;kl � sf;klÞ � sp;iksp;kl�ejl � ðsp;ik þ cikÞelkðbdjl þ cjlÞ; ð36Þ

where the components of the particle shear rate tensor, sp;ij, is defined by

sp;ij � o�tti=oxj: ð37Þ

For the condition of simple shear flows (see Fig. 1), the flow field can be written as follows:

hui ¼ sf;xyyiþ 0j; ð38Þ

�vv � sp;xyyiþ sp;yyyj: ð39Þ

If it is assumed that flow turbulence is locally homogeneous and the shear-induced lift force acts
only in the transverse direction (c11, c12, c22 ¼ 0, c21 ¼ c), the transverse normal and shear com-
ponents of the long-time particle Reynolds stress are expressed as follows, respectively:
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t02y ð1Þ ¼ 1

b
lyyð1Þ þ c

b
kxyð1Þ � c2

b
exxð1Þ � ceyxð1Þ þ c

b
ðsf;xy � sp;xyÞeyyð1Þ

� c
b

exyð1Þ
�

þ 2eyyð1Þ
�
sp;yy �

1

b
e22ð1Þs2p;yy; ð40Þ

t0xt
0
yð1Þ ¼ 1

2b
ðlxy þ lyxÞð1Þ þ c

2b
kxxð1Þ � c

2
exxð1Þ þ c

2b
exyð1Þ

�
þ 1

2
eyyð1Þ

�
sf;xy

� c
b

exyð1Þ
�

þ eyyð1Þ
�
sp;xy: ð41Þ

Detailed derivation of the limiting forms of the dispersion coefficients, lyy, lxy, lyx, kxy, and kxx, are
given in Appendix A and the final resulting expressions are as follows:

lxyð1Þ ¼ e0xxbc
1þ bsL;xx � csfs2L;xx

ð1þ bsL;xxÞ2 � csfs2L;xx
þ e0xyb

2
1þ bsL;xy � csfs2L;xy

ð1þ bsL;xyÞ2 � csfs2L;xy

þ e0xx
sfc2bs2L;xx

ð1þ bsL;xxÞ2 � csfs2L;xx
þ 2e0xy

sfcb
2s2L;xy

ð1þ bsL;xyÞ2 � csfs2L;xy

þ e0yy
sfb

3s2L;yy
ð1þ bsL;yyÞ2 � csfs2L;yy

; ð42Þ

lyxð1Þ ¼ e0xx
b2csL;xx

csfs2L;xx � ð1þ bsL;xxÞ2
þ e0xxbc

1þ bsL;xx
ð1þ bsL;xxÞ2 � csfs2L;xx

þ e0yxb
2 1þ bsL;yx
ð1þ bsL;yxÞ2 � csfs2L;yx

; ð43Þ

Fig. 1. Schematic of the mean velocity field in the 2-D simple shear flow.
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lyyð1Þ ¼ e0xx
c2bsL;xx

csfs2L;xx � ð1þ bsL;xxÞ2
þ e0xy

cb2sL;xy
csfs2L;xy � ð1þ bsL;xyÞ2

þ e0xxc
2 1þ bsL;xx
ð1þ bsL;xxÞ2 � csfs2L;xx

þ 2e0xybc
1þ bsL;xy

ð1þ bsL;xyÞ2 � csfs2L;xy

þ e0yyb
2 1þ bsL;yy
ð1þ bsL;yyÞ2 � csfs2L;yy

; ð44Þ

kxxð1Þ ¼ b2e0xx
ð1þ bsL;xxÞsL;xx � csfs3L;xx
ð1þ bsL;xxÞ2 � csfs2L;xx

þ e0xx
sfcb

2s3L;xx
ð1þ bsL;xxÞ2 � csfs2L;xx

þ e0yx
sfb

3s3L;yx
ð1þ bsL;yxÞ2 � csfs2L;yx

; ð45Þ

kxyð1Þ ¼ e0xxbc
ð1þ bsL;xxÞsL;xx � csfs3L;xx
ð1þ bsL;xxÞ2 � csfs2L;xx

þ e0xyb
2
ð1þ bsL;xyÞsL;xy � csfs3L;xy
ð1þ bsL;xyÞ2 � csfs2L;xy

þ e0xx
sfc2bs3L;xx

ð1þ bsL;xxÞ2 � csfs2L;xx
þ 2e0xy

sfcb
2s3L;xy

ð1þ bsL;xyÞ2 � csfs2L;xy

þ e0yy
sfb

3s3L;yy
ð1þ bsL;yyÞ2 � csfs2L;yy

: ð46Þ

The particle diffusivity in the long-time limit, eijð1Þ, in Eqs. (40) and (41) was assumed equal to
that of the flow, which was assumed locally homogeneous stationary, as a good approximation
(Reeks, 1977; Pismen and Nir, 1978):

eijð1Þ ¼ e0ij � sLhu0iu0ji: ð47Þ

Since the wall-normal particle fluctuation is the predominant factor in the deposition process
and the inclusion of lift force may not generate an appreciable amount of memory effect in the
shear component, the non-equilibrium constitutive relation is applied to the transverse normal
component of the particle Reynolds stress only. In Eq. (40) s2p;yy can be safely neglected because
the magnitude of sp;yy is usually much smaller than those of sp;xy and sf;xy. If it is further assumed
that the y-directional derivative of this gradient diffusion term is negligible, the constitutive re-
lations for the particle Reynolds stress become

t02y ¼ �Dyy
d�tty
dy

þ 1

�
� sb�tty

d

dy

�
1yy; ð48Þ

t0xt
0
y ¼ �Dxy

d�ttx
dy

þ 1xy; ð49Þ

where coefficients Dxy, Dyy, fxy and fyy are defined as

Dyy �
c
b

exyð1Þ þ 2eyyð1Þ; ð50Þ
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Dxy �
c
b

exyð1Þ þ eyyð1Þ; ð51Þ

1yy �
1

b
lyy þ

c
b

kxy �
c2

b
exx � ceyx þ

c
b

eyyðsf;xy � sp;xyÞ; ð52Þ

1xy �
1

2b
ðlxy þ lyxÞ þ

c
2b

kxx �
c
2

exx þ
1

2

c
b

exy

�
þ eyy

�
sf ;xy: ð53Þ

In contrast to the traditional simple gradient models, the present relationship for t0xt
0
y includes

an additional term fxy besides the gradient diffusion term. Through this term, t0xt
0
y depends not

only on the spatial gradient of �ttx, but also on the particle inertia and the mean shear rate and
turbulence level of the flow.

Throughout all the calculations, the diffusion coefficients of the flow in Eqs. (50)–(53) are as-
sumed equal to those for the locally isotropic turbulence of the flow; that is, e0xy; e

0
yx ¼ 0, and

e0xx ¼ e0yy ¼ mt. And it is also assumed that sL;ij ¼ sL for all i; j ¼ x or y.

3.2. Choice of the intermediate diffusion time scale, s

As is clear from Eqs. (7) and (48), the amount of correction for the memory effect is sensitively
dependent on the intermediate diffusion time scale s, and s has to be chosen depending on the
characteristic time scale of the mechanism of interest. For the problem of particle deposition in a
fully developed turbulent channel flow, the characteristic scale of turbulent eddies in the vicinity
of the wall may be the best candidate for the characteristic scale of the deposition process. And the
Lagrangian integral time scale of turbulence is generally the most representative time scale of
turbulent eddy motion. Thus, it is most reasonable to choose the Lagrangian integral time scale
close to the wall as s. Measurements of organized near-wall structures have indicated that the time
scale is approximately constant at sþL � 10 in the near-wall region (Wallace et al., 1972; Brodkey
et al., 1974; Luchik and Tiederman, 1987), and s is expected to be close to this value.

As a criterion for the choice of s, deposition velocities are calculated for values of sþ ranging
from 0.1 to 1000 (see Fig. 2), using the simple non-equilibrium model (Shin and Lee, 2001) in the
absence of the lift force. As can be seen in Fig. 2, the deposition curves move only within a rather
limited range with the variation of sþ and the estimated deposition curve approaches the equi-
librium curve as sþ goes to infinity. Kallio and Reeks� (1989) Lagrangian particle tracking data for
sþp ¼ 30 and 100 imply that sþ coincides roughly with the Lagrangian integral time scale estimated
in the experiments of organized near-wall structures (sþL � 10). In the present work, sþ ¼ 5 will be
used throughout all the calculations of turbulent particle deposition. If a much larger sþ than the
characteristic time scale of the near-wall turbulent eddies is used, the detailed information of
particle–eddy interaction will be lost, and the predicted deposition rate will approach the equi-
librium value with increased sþ.

3.3. Summary of the present model for the constitutive equations

In this chapter, we derived the long-time values of t02y and t0xt
0
y in the presence of shear-induced

lift force under the assumption that the surrounding turbulence is locally homogeneous. The only

904 M. Shin et al. / International Journal of Multiphase Flow 29 (2003) 893–926



stringent assumption used is that the long-time particle turbulent diffusivity is equal to that of the
fluid so it is independent of the mean shear rate of the flow. The adoption of this assumption is
rather inevitable either due to the lack of any better information or to limit the complexity of the
formulas to a proper level.

Table 2 briefly summarizes the comparison of important terms in the non-equilibrium con-
stitutive equations for the turbulent deposition of particles between the present model and the
existing ones.

4. Results and discussion

The set of equations (9), (10) and (12) are solved numerically using the pseudo-transient iter-
ation method. The equations are discretized using the finite volume method and the upwind
scheme is applied to the convective terms. Simulation conditions are summarized in Table 3, and
surrounding turbulence quantities are specified by (A.1)–(A.9).

Fig. 2. Variation of V þ
depðsþp Þ with sþ in the absence of the lift force: thin lines, Shin and Lee (2001) model; solid thick

line, equilibrium model; �, Kallio and Reeks (1989).

Table 2

Comparison between constitutive equations

Transverse normal compo-

nent, t02y

Shear component, t0xt
0
y

Guha (1997); Young and Leeming (1997) sL
spþsL

hu02y i �mt
d�tty
dy

Shin and Lee (2001) 1� sb�tty d
dy


 �
sL

spþsL
hu02y i �mt

d�tty
dy

Present �Dyy
d�tty
dy þ 1� sb�tty d

dy


 �
fyy �Dxy

d�tty
dy þ fxy

M. Shin et al. / International Journal of Multiphase Flow 29 (2003) 893–926 905



4.1. Non-equilibrium wall-normal particle RMS velocity

The particle momentum transport toward the wall inside the turbulent boundary layer is most
strongly affected by t02y through the turbophoresis term in the momentum equation (9). Also t02y
influences the gradient of particle concentration through the boundary condition (13). According
to Eq. (13), the gradient of particle concentration depends on the parameter which is the ratio of

�tty to
ffiffiffiffiffi
t02y

q
in the vicinity of the wall, in such a way that when the particle mean velocity becomes

much greater than the particle RMS velocity (n � 1) the gradient of particle concentration ap-
proaches 0. Judging from these facts, an accurate prediction of t02y is directly connected to an
accurate prediction of the inertial deposition of large particles.

Near-wall distributions of particle RMS velocity for various particle relaxation times are
predicted by the present non-equilibrium theory, and they are compared with predictions by the
equilibrium theory in Fig. 3(a) and (b). In order to compare the predictions with DNS results of
Rouson et al. (1994), particles with sþp ¼ 9; 117; 810 are considered. Fig. 3(a) compares the DNS
results with the predictions in the absence of the shear-induced lift force (c ¼ 0) and Fig. 3(b) in
the presence of the lift force (c 6¼ 0). In the turbulence-core region (yþ > 30), where the flow
turbulence is almost homogeneous, both the present equilibrium theory and the non-equilibrium
theory give almost the same prediction about the reduction of particle turbulence intensity with
particle relaxation time. In the near-wall region (yþ < 30), on the other hand, the predictions by
the present theory deviate from those by the equilibrium theory. This discrepancy becomes larger
with increased sþp . It can be attributed to the memory effect of inertia-dominated particles by
which particles retain a high level of fluctuating intensity as they travel from the turbulence-core
region into the near-wall region. For the particles with sþp ¼ 117 and 810, there exist striking
differences between the non-equilibrium and the equilibrium distributions. In the near-wall region,
the predicted non-equilibrium RMS velocities are in much better agreement with DNS results
compared with those computed under the local equilibrium assumption (Fig. 3(a)).

Inclusion of the shear-induced lift force in the particle momentum equation increases the
wallward particle velocity in the strong shear region (yþ < 30), and makes the large particles
maintain their high level of fluctuating intensity much closer to the wall than in the absence of the
lift force (Fig. 3(b)). The lift force has an effect of increasing the particle fluctuating intensity in the
near-wall region, and, as will be mentioned later, the concentration profiles of large particles
become flatter in the vicinity of the wall by the lift force.

Plotted in Fig. 4(a) and (b) is the predicted additional RMS velocities induced from the non-
equilibrium factors, such as the inhomogeneity of boundary layer turbulence and particle inertia,
for various particle relaxation times. It is clearly shown that, inside the strong shear region
(yþ < 30), the RMS velocities of large particles are higher than the values predicted under the
local equilibrium assumption and the discrepancy becomes larger with increasing the particle

Table 3

Simulation conditions

Re ð� Uch=mÞ hþ m u� qf qp=qf

3300 180 1.502� 10�5 m2/s 5.45� 10�2 m/s 1.205 kg/m3 713
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inertia. It is also seen that the shear-induced lift force augments the non-equilibrium increment of
RMS velocity with particle inertia.

4.2. Non-equilibrium turbophoresis

The wall-normal gradient of particle fluctuating velocity inside the boundary layer induces a
force to accelerate particles toward the wall, and the force is called turbophoresis (Reeks, 1983),

Fig. 3. Distribution of vþy;rms in the boundary layer (a) without and (b) with the lift force: thin lines, equilibrium model;

thick lines, non-equilibrium model. DNS data from Rouson et al. (1994): , 28 lm lycopodium (sþp ¼ 9); N, 50 lm glass

(sþp ¼ 117); �, 70 lm copper (sþp ¼ 810).
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which generates a particle drift toward the wall and therefore plays an important role in the in-
ertial deposition of turbulent particles. Under the assumption that particles are in perfect equi-
librium with the local fluid turbulence, the following turbophoretic velocity was defined from Eqs.
(5) and (6) (Reeks, 1983; Young and Leeming, 1997):

tþt;ep ¼ � 24

Rep

1

CD

sp
d

dy
sL

sp þ sL
hu02y i

� �
1

u�
: ð54Þ

Fig. 4. Distribution of non-equilibrium increment of vþy;rms (a) without and (b) with the lift force.
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Combining Eqs. (9) and (48), the non-equilibrium turbophoretic velocity can be defined in a
similar form as Eq. (54), and then it can be decomposed into an equilibrium part, tt;eq, and an
additional part due to the non-equilibrium memory effect, Dtt:

tþt ¼ tþt;eq þ Dtþt ; ð55Þ

where tt;eq and Dtt are expressed as, respectively,

tþt;eq ¼ � 24

Rep

1

CD

sp
d

dy
fyy

 
� Dyy

d�tty
dy

!
1

u�
; ð56Þ

Dtþt ¼ 24

Rep

1

CD

sp
d

dy
sb�tty

dfyy
dy

� �
1

u�
: ð57Þ

There is a marked discrepancy between the two different equilibrium turbophoretic velocities,
tt;ep and tt;eq, defined in Eqs. (54) and (56), respectively. The former one tt;ep was derived under the
assumption that the particle motion is governed by the Stokes drag force. The equilibrium
turbophoretic velocity tt;ep obtained from Eq. (54), therefore, is unrelated with the variation of
mean shear rates of both the phases, sf;xy and sp;xy. On the other hand, the latter one tt;eq was
formulated with the shear-induced lift force acting on the particle motion.

The two equilibrium turbophoretic velocities tt;ep and tt;eq are compared in Fig. 5(a) and (b) for
various particle relaxation times. Fig. 5(a) is the case of zero shear-induced lift force (c ¼ 0) and
Fig. 5(b) the case of non-zero lift force (c 6¼ 0). For comparison with the existing data, the pre-
dictions are plotted together with the DNS data from Brooke et al. (1994) for sþp ¼ 3; 5; 10 where
the lift force was not included. Since these particles are small enough to neglect the non-equi-
librium memory effects, it will be reasonable to directly compare the DNS results with the
equilibrium predictions. The comparison with DNS results clearly shows that the equilibrium
turbophoretic velocity calculated from Eq. (56) is in a better agreement than that from Eq. (54).

In the absence of the lift force effect, the existing equilibrium theory tends to predict higher
values of turbophoretic velocity than the present theory (Fig. 5(a)). In the existing equilibrium
theory, the inclusion of lift force reduces the turbophoresis. The present theory, on the other hand,
predicts an increased turbophoresis by the inclusion of lift force. At present there are no exper-
imental data to check the conflicting predictions against, so it remains to be clarified in the future
by experiments or Lagrangian particle tracking using DNS or LES.

As mentioned in the preceding section, the particle fluctuating intensity is markedly increased in
the near-wall region (yþ < 20) due to the memory effect, and the increased particle turbulence
induces an additional turbophoretic velocity, Dtt. Fig. 6(a) and (b) presents the near-wall dis-
tributions of Dtþt as a function of particle relaxation time with and without the lift force effect. As
was mentioned in Shin and Lee (2001), the additional turbophoresis due to the non-equilibrium
memory effect accelerates the particles toward the wall in the near-wall region (yþ < 20), but in the
outer region (yþ > 20) pushes particles away from the wall into the core. This tendency increases
with particle relaxation time. In the presence of lift force the additional turbophoretic velocity by
non-equilibrium effect is increased by a factor of 2 or 3 over all particle sizes (Fig. 6(b)).

Fig. 7(a) and (b) presents the near-wall distributions of total turbophoretic velocity, tt, which is
the sum of the equilibrium part, tt;eq, and the additional part due to the memory effect, Dtt. When
compared with Fig. 5(a) and (b), it is recognized that, due to the non-equilibrium memory effect,
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the peak position of the wallward turbophoretic velocity gets closer to the wall than predicted by
the existing equilibrium theory. As the particle size increases, the additional part Dtt contributes
more and more to the wallward turbophoretic velocity in the vicinity of the wall (yþ < 20), but it
acts in the opposite direction away from the wall in the region of 20 < yþ < 50. Thus the profile of
the total turbophoretic velocity becomes sharper, taller and closer to the wall with increasing

Fig. 5. Distribution of the equilibrium turbophoretic velocity, vþt;eq, (a) without and (b) with the lift force: thin lines, vþt;ep
(existing equilibrium theory); thick lines, vþt;eq (present theory). DNS data from Brooke et al. (1994): , sþp ¼ 3; N,

sþp ¼ 5; �, sþp ¼ 10.
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particle size. This feature of the profile of turbophoretic velocity is unchanged by the inclusion of
lift force. The lift force makes the peak position much closer to the wall, and, at the same time, the
peak value much higher than in the absence of the lift force.

Fig. 8(a) and (b) shows the peak positions of equilibrium and non-equilibrium turbophoretic
velocities as a function of particle relaxation time. For small particles (sþp < 1), the peak position
is located at roughly yþ � 15. For larger particles (sþp > 10), the peak position varies with particle
size. The peak position of equilibrium profile tt;eq becomes more distant from the wall with in-
creased particle size. Compared with the results obtained from the present theory, the existing

Fig. 6. Distribution of non-equilibrium increment of vþt (a) without and (b) with the lift force.
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equilibrium theory tends to overestimate the variation of peak position with particle size. When
the non-equilibrium effect is considered, the peak position changes with particle size in the op-
posite sense. That is, for moderate or large particles (sþp > 10), the peak position of tt gets nearer
to the wall with increased particle size. For particles with sþp ¼ 100, for instance, the existing
equilibrium theory predicts the peak position yþpeak � 24, but on the other hand the present non-
equilibrium theory predicts yþpeak � 14 in the absence of the lift force (Fig. 8(a)) and yþpeak � 11 in
the presence of the lift force (Fig. 8(b)). As is clear from Fig. 8(a) and (b), the inclusion of lift force

Fig. 7. Near-wall distribution of total turbophoretic velocity (a) without and (b) with the lift force. Symbols, DNS data

for sþp ¼ 10 from Brooke et al. (1994).
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contributes to moving the peak position of the turbophoretic velocity closer to the wall as well as
increasing the peak value.

Though it still needs to be verified in the future, it can be concluded from the above results that,
due to the non-equilibrium conditions induced from particle inertia and inhomogeneity of flow
turbulence, inertia-dominated particles acquire an additional momentum toward the wall in the
near-wall region where the fluid turbulence is too weak to supply the particles with necessary
momentum for a free-flight. No existing equilibrium theories have ever provided this mechanism
of particle transport inside the turbulent boundary layer. In order to make an agreement with

Fig. 8. Predicted change of the peak-position of maximum vþt (a) without and (b) with the lift force: solid line, vþt;ep;
dotted lines, vþt;eq; dash-dotted lines, vþt .
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measured data, for example, the existing free-flight theories introduced various mechanisms giving
similar effects in a somewhat ad hoc manner.

4.3. Particle mean velocity

The momentum transport equations (9) and (10) coupled with the constitutive equations (48)
and (49) give x-direction and y-direction components of the particle mean velocity. In general, the
large particles (sþp > 10) lead the fluid mainly in the strong shear region (yþ < 30) (Kulick et al.,
1994; Rouson et al., 1994). This discrepancy in the streamwise velocities between fluid and particle
increases with increasing particle size. Although the transport equations (9) and (10) are not exact
but only approximate, the calculation results for the streamwise mean velocity agree well with this
general feature in a qualitative sense (Fig. 9(a)). Compared with DNS results (Rouson et al.,
1994), the existing equilibrium theory tends to overestimate the relative motion of large particles.
This overestimation is seen to be alleviated by considering the non-equilibrium memory effect on
the particle Reynolds stress terms. This trend can also be regarded as a supporting evidence for
the adequacy of the present formulation. The inclusion of lift force serves to enhance the relative
motion of the dispersed phase to the carrier phase (Fig. 9(b)).

Actually ty plays a key role in the inertial deposition mechanism, and its near-wall distribution
is illustrated for several particle sizes (sþp P 10) in Fig. 10(a) and (b). The change of �tty with particle
size is not monotonic. With increasing particle size, �tty initially increases in the near-wall region,
but begins to decrease beyond certain particle size. This characteristic dependence of �tty on particle
size is directly related to the roll-off in the deposition velocity, V þ

dep, in the inertia-moderated re-
gime (sþp > 30). When the lift force is not considered, the non-equilibrium situation serves to
increase �tty restrictively in the near-wall region (yþ < 10) for the particles with sþp < 30, but, for
large particles (sþp > 30), serves to attenuate the particle velocity over all region of the boundary
layer (Fig. 10(a)). The inclusion of the lift force greatly influences the momentum transport of the
dispersed phase, enhancing the near-wall wallward velocity by roughly more than 100% of
magnitude, and in this case the non-equilibrium situation serves to attenuate the wallward velocity
for the particles with sþp > 10 (Fig. 10(b)).

4.4. Inertial deposition of particles

As is well known, the deposition velocity of inertia-dominated particles decreases with in-
creased particle size beyond a certain limit, resulting in the roll-off in V þ

dep. Since this character-
istic feature of inertia-dominated particles is related with the non-equilibrium situation, the
existing equilibrium theories have never presented a quantitatively acceptable mechanism.
This section is devoted to showing the validity of the present theory for presenting a reason-
able deposition mechanism and predicting an accurate deposition velocity even in a quantitative
sense.

If the particle concentration and the deposition velocity are calculated in the absence of the lift
force, it is observed that the effect of particle inertia reduces the build-up of particle concentration
(see Fig. 11). As mentioned before in the preceding sections, for moderate-sized particles (sþp ¼ 10
and 30) the particle RMS velocity and the wallward convective velocity in the vicinity of the wall
are higher than those expected by an equilibrium theory due to the non-equilibrium situation
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inside the near-wall region. These non-equilibrium mechanisms lead the convective flux of the
particles of sþp ¼ 10 and 30 to increase, resulting in a much reduced concentration level predicted
by the equilibrium theory. The predicted non-equilibrium concentration profile in the near-wall
region looks reasonable when compared with the DNS results of Brooke et al. (1994). For large
particles (sþp > 30), the concentration profile becomes flat in the near-wall region, which implies
that the convective flux is the dominating mechanism in the inertial deposition.

Fig. 9. Distribution of �vvþx (a) without and (b) with the lift force: thin lines, equilibrium model; thick lines, non-equi-

librium model. DNS data from Rouson et al. (1994): , 28 lm lycopodium (sþp ¼ 9); N, 50 lm glass (sþp ¼ 117); �, 70

lm copper (sþp ¼ 810).
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Now the particle deposition velocity, V þ
dep, is calculated and compared with the Monte-Carlo

simulation of Kallio and Reeks (1989) in Fig. 12. As mentioned before, the non-equilibrium
situation in the near-wall region enhances the wallward particle velocity for relatively moder-
ate sized particles (sþp < 30), but not for large particles (sþp > 30). Comparison of the pre-
dicted deposition velocities with the Lagrangian data implies that the real deposition velocity is
higher than the equilibrium prediction in the diffusion–impaction regime (1 < sþp < 30), but
lower in the inertia-moderated regime (yþ > 30). The deposition velocity predicted by the present

Fig. 10. Distribution of �vvþy (a) without and (b) with the lift force: thin lines, equilibrium model; thick lines, non-

equilibrium model.
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non-equilibrium model is in excellent agreement with the Lagrangian data even in a quantitative
sense. This excellent agreement between the present predictions with the existing Lagrangian
simulation data strongly supports the validity of the present non-equilibrium theory.

Now the shear-induced lift force is considered in the deposition process. As mentioned before,
the inclusion of the lift force increases the RMS velocity and wallward velocity of the dispersed
phase inside near-wall region. Due to these mechanisms, the inclusion of the lift force makes the

Fig. 11. Concentration profile normalized by / at yþ ¼ 40 in the absence of the lift force: thin lines, Young and

Leeming�s model; thick lines, present non-equilibrium model; symbols, Brooke et al.�s (1994) data for sþp ¼ 10.

Fig. 12. Predicted deposition velocities as a function of particle relaxation time in the absence of the lift force: solid thin

line: Young and Leeming�s (1997) model; dashed thin line: Shin and Lee�s (2001) model; symbols, Kallio and Reeks

(1989).
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near-wall profile of particle concentration flat, and the diffusive deposition becomes negligible
even for moderate sized particles, sþp � Oð10Þ (Fig. 13).

Since the lift force is generally thought to increase the deposition velocity, Kallio and Reeks
(1989) inferred from their simulation results that the lift force increases the wall-normal particle
RMS velocity in the strong shear region, and the increased RMS velocity will lead to an increased
particle turbulent diffusivity, which will consequently result in an enhanced deposition. However,
this conjecture is not always true. Inside the strong shear region, the inclusion of shear-induced lift
force leads to a considerably large drift motion of inertia-dominated particles relative to the
carrier fluid, and the relative motion between the two phases may reduce the particle diffusivity
due to the effect of crossing trajectories.

On the contrary, when the particle diffusivity is modeled by the dispersion theory of Csanady
(1963) (see Eq. (23)), the particle diffusivity for large particles may be remarkably reduced in the
near-wall region by the effect of crossing trajectories (Fig. 14). In order to test the effect of crossing
trajectories on the deposition velocity, two models are considered in the presence of lift force; one
is the case of particle diffusivity equal to the fluid turbulent diffusivity (ep ¼ mt), and the other is the
case of particle diffusivity modeled by Eq. (23). The deposition velocities calculated with two
different diffusivity models are compared in Fig. 15 with existing data (Liu and Agarwal, 1974;
Kallio and Reeks, 1989). The existing numerical and experimental data are in good agreement
with the predicted deposition velocity using the new diffusivity model which gives reduced particle
diffusivity with particle size in the near-wall region.

From this fact, it can be postulated that, in the vicinity of the wall, the shear-induced lift force
enhances the convective deposition of inertia-dominated particles through the increased wallward
convective velocity, but simultaneously reduces the diffusive deposition of inertia-dominated
particles through decreased particle diffusivity. But the enhancement in convective deposition is

Fig. 13. Concentration profile in the presence of the lift force: thin lines, equilibrium profile; thick lines, non-equi-

librium profile.
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larger than the reduction in diffusive deposition, so the total deposition velocity of inertia-dom-
inated particles remains higher than that predicted in the absence of the lift force.

Finally, in order to clearly show the validity of the present theory on the non-equilibrium
particle Reynolds stress, the predicted deposition velocities are plotted together with the nu-
merically simulated Lagrangian data of Kallio and Reeks (1989), where the two different lift force
conditions are considered (Fig. 16). When the lift force is not considered, the particle diffusivity
was assumed equal to the fluid turbulent diffusivity over all range of particle sizes (eþp ¼ mþt for all

Fig. 14. Dependence of the model diffusivity, ~eeþp ðyþÞ, on particle inertia.

Fig. 15. Predicted deposition velocities with different diffusivity models in the presence of the lift force: solid line,

Young and Leeming� model; �, Kallio and Reeks (1989); N, Liu and Agarwal (1974).
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sþp ), as usual. When the lift force is considered, on the other hand, the effect of crossing trajectories
is taken into account in the particle diffusivity for inertia-dominated particles as in the following
model:

eþp ¼ mþt for sþp < 30;
~eeþp for sþp > 30:

(
ð58Þ

For both the cases of with and without lift force included, Eulerian predictions by the present
non-equilibrium model are in good agreement with the Lagrangian data.

The unified deposition model was able to predict the inertial deposition of inertia-dominated
particles with an improved accuracy by using the present constitutive equations for the particle
Reynolds stress accounting for the effects of particle inertia and mean shearing of the carrier flows
on the transport of the dispersed phase. But, in order to construct more accurate unified depo-
sition model, a further study is needed on the effects of mean shearing of the fluid phase and the
relative drift of the particles to the fluid on the turbulent dispersion of high-inertia particles.

5. Conclusion

In the present study, non-equilibrium mechanism in the transport of inertia-dominated parti-
cles was explained in the problem of particle deposition inside a turbulent boundary layer. When
the particle relaxation time scale, sp, becomes comparable or greater than the characteristic time
scale of the system of interest, s, the particle Reynolds stress is in a non-equilibrium state, and the
relaxation time sb is then required to reach the equilibrium state. Transport of the inertia-
dominated particles is seriously affected also by the mean shearing of the carrier flows. In order to
explain such non-equilibrium effects on the transport of the dispersed particle phase, the con-

Fig. 16. Comparison of the predicted deposition velocities with the Lagrangian data: solid thin line, Young and

Leeming�s model (no lift); dotted thin line, Young and Leeming�s model (lift); �, Kallio and Reeks (1989, no lift); ,

Kallio and Reeks (1989, lift).
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stitutive equations for the particle Reynolds stress terms were derived from the stochastic dif-
ferential equation of motion of particles governed not only by the Stokes drag force but also by
the shear-induced lift force.

Compared with the traditional Boussinesq approximation and Shin and Lee�s (2001) model, the
present constitutive model reflects more precisely the dependence of particle Reynolds stress terms
on the mean shear rate of the carrier flow as well as the particle inertia. The present constitutive
model is different from the traditional ones; that is, the wall-normal stress contains the gradient
diffusion term of the wallward particle momentum, the shear stress contains an additional term
besides the gradient diffusion term, and so on. In the present work, two kinds of critical as-
sumptions were simply adopted in the formulation due to the lack of any better information; that
is, it was assumed that, at first, the near-wall distribution of fluctuating velocities of particles was
Gaussian for mathematical simplicity and, at second, the long-time diffusivity of turbulent particle
was independent of mean shearing of the carrier flow field.

The present constitutive equations were then applied to the particle Reynolds stress terms in the
problem of particle deposition in the fully developed turbulent channel flows. In the deposition
predictions, the intermediate diffusion time scale s was chosen to be close to a characteristic time
scale of near-wall turbulent eddies, such as the Lagrangian integral time scale. If s were chosen to
be much larger than sp in disregard of near-wall eddy scales, the description of particle transport
would have lost information about the non-equilibrium memory effect. The concluding remarks
of the present study on the turbulent particle deposition are summarized as follows:

(a) In the near-wall region the wall-normal RMS velocity of the inertia-dominated particles
(sþp > 10) is larger than the equilibrium one, and the discrepancy becomes larger with in-
creased particle size. It can be attributed to the memory effect of large particles by which par-
ticles retain a high level of fluctuating intensity as they travel from the turbulent core region
into the near-wall region. The inclusion of the shear-induced lift force augments the non-equi-
librium increment of the particle RMS velocity with particle inertia.

(b) The non-equilibrium increment of the particle RMS velocity induces an additional turbopho-
resis, which accelerates the particles toward the wall in the vicinity of the wall, yþ < 20, but in
the outer region of yþ > 20 pushes particles away from the wall into the core. Due to this ad-
ditional non-equilibrium part the peak values of the total turbophoresis are more increased
and the peak positions get closer to the wall than those predicted by the equilibrium theory
with increasing particle relaxation time. The lift force makes the peak position much closer
to the wall and the peak value much higher than in the absence of the lift force.

(c) As the particle relaxation time increases, the non-equilibrium situation serves to increase the
wallward particle velocity in the near-wall region for moderate sized particle (sþp < 30), but for
large particles (sþp > 30) serves to attenuate the particle velocity over all region of the bound-
ary layer. The inclusion of the lift force greatly augments the wallward particle velocity.

(d) Inside the strong shear region of the boundary layer the inclusion of the shear-induced lift
force leads to a considerably large drift motion of inertia-dominated particles relative to
the surrounding fluid, and the relative motion between the two phases may reduce the turbu-
lent particle diffusivity due to the effect of crossing trajectories.

(e) In the vicinity of the wall the shear-induced lift force not only enhances the convective depo-
sition of inertia-dominated particles through the increased wallward convective velocity but
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also simultaneously attenuates the diffusive deposition of inertia-dominated particles through
decreased particle diffusivity. The enhancement of convective deposition is larger than the re-
duction of diffusive deposition, so that the total deposition velocity of inertia-dominated par-
ticles remains higher than that predicted in the absence the lift force.

(f) The deposition velocities as a function of particle relaxation time predicted by the present non-
equilibrium model are in excellent agreement with existing numerical and experimental data
even in a quantitative sense.

Acknowledgement

This work was supported by grant no. 98-0200-03-01-3 from the Basic Research Program of the
Korea Science and Engineering Foundation.

Appendix A

A.1. Streamwise mean velocity profile of the carrier phase

The dimensionless velocity profile over a flat plate in the turbulent boundary layer is given as

huþ1 i ¼
yþ for yþ 6 5;
a0 þ a1yþ þ a2yþ

2 þ a3yþ
3

for 5 < yþ 6 30;
2:5 ln yþ þ 5:5 for yþ > 30;

8<
: ðA:1Þ

where a0 ¼ �1:076, a1 ¼ 1:445, a2 ¼ �0:04885, and a3 ¼ 0:0005813 (Kallio and Reeks, 1989).

A.2. Distribution of eddy viscosity inside the boundary layer

The model for the eddy viscosity mþt is a two-layer model where the eddy viscosity for near-wall
and core flows are described by two separate functions connected by a smooth transition
(Granville, 1990):

mþt ðyþÞ ¼ mþc tanh
mþw
mþc

� �
: ðA:2Þ

In Eq. (A.2), mþc is for the near-wall region, and mþw for the core flow:

mþc ¼ 0:4yþ 1



� ey
þ2

=242
�
; ðA:3Þ

mþw ¼ 0:03Uþ
c dþ 1:1

"
� 0:2

p
tan�1 yþ2

ðhþ � yþÞ2

 !#
; ðA:4Þ

where dþ is the momentum thickness:
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dþ ¼
Z hþ

0

1

�
� huþ1 i

Uþ
c

�
dyþ; ðA:5Þ

where Uc is the mean velocity at the centerline.

A.3. Distribution of fluid RMS velocity inside the boundary layer

The model for the fluid RMS velocity is similar in form to Eq. (A.2) (Young and Leeming,
1997): ffiffiffiffiffiffiffiffiffiffiffiffi

hu0þ2
2 i

q
ðyþÞ ¼ #c tanh

#w

#c

� �
; ðA:6Þ

where

#c ¼ 0:0373yþ 1



� ey
þ=4:67

�
; ðA:7Þ

#w ¼ 0:9� 0:54

p
tan�1 yþ2

ðhþ � yþÞ2

 !
: ðA:8Þ

In Eqs. (A.7) and (A.8), constants were chosen to satisfy various boundary values and limiting
behaviors suggested by the DNS results of Kim et al. (1987).

A.4. Distribution of Lagrangian integral time scale inside the boundary layer

The Lagrangian integral time scale sþL is given by (Young and Leeming, 1997)

sþLðyþÞ ¼
mþt ðyþÞffiffiffiffiffiffiffiffiffiffiffiffi
hu0þ2

2 i
q

ðyþÞ
: ðA:9Þ

A.5. Empirical formula of the drag coefficient

The drag coefficient is given by the following empirical formula (Serfini, 1954; Sartor, 1975):

CD ¼

24
CcRep

for Rep < 0:1;
24
Rep

ð1þ 0:0916RepÞ for 0:1 < Rep < 5:0;
24
Rep

ð1þ 0:158Re2=3p Þ for 5:0 < Rep < 1000:

8><
>: ðA:10Þ

The Cuningham slip correction factor is given by (Hinds, 1982)

Cc ¼ 1þ 2

Pd
ð6:32þ 2:01e�0:1095PdÞ; ðA:11Þ

where P is the absolute pressure in cmHg, and d is the particle diameter in lm.
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A.6. Evaluation of long-time dispersion coefficients, lijð‘Þ and kijð‘Þ

The dispersion coefficients are defined as follows (Reeks, 1992):

lijðtÞ ¼
Z t

0

dsh _ggkiðt � sÞf 0
kðv;x; t j sÞf 0

j ðx; tÞi; ðA:12Þ

kijðtÞ ¼
Z t

0

dshgkiðt � sÞf 0
kðv;x; t j sÞf 0

j ðx; tÞi; ðA:13Þ

where gki is the response coefficient satisfying the following equation:

€ggij ¼ � _ggikBjk þ gik
ohfji
oxk

þ dijdðtÞ: ðA:14Þ

gij denotes the j-directional displacement of the particle due to an impulsive force per unit mass,
dðtÞ, in the i-direction. Coefficients of B and mean aerodynamic forces are given by

B11 ¼ b; B12 ¼ 0; B21 ¼ c; B22 ¼ b; ðA:15Þ
hf1i ¼ bsfx2; hf2i ¼ csfx2: ðA:16Þ

Then the system of differential equations for the response coefficients is given as follows:

€gg11 ¼ �b _gg11 þ bsfg12 þ dðtÞ;
€gg12 ¼ �c _gg11 � b _gg12 þ csfg12;

€gg21 ¼ �b _gg21 þ bsfg22;

€gg22 ¼ �c _gg21 � b _gg22 þ csfg22 þ dðtÞ:

ðA:17Þ

From the condition of stationary homogeneous turbulence, the dispersion coefficients lijð1Þ
and kijð1Þ can be reduced to the following simple forms:

lijð1Þ ¼
Z 1

0

ds _ggkiðsÞBknBjmQnmðsÞ; ðA:18Þ

kijð1Þ ¼
Z 1

0

dsgkiðsÞBknBjmQnmðsÞ; ðA:19Þ

where QnmðsÞ is the Lagrangian autocorrelation function of the carrier turbulence. In general, it is
not expected that a universal form exists for the correlation function of homogeneous turbulence.
As usual it can be approximated with an exponential form on the ground of mathematical sim-
plicity (Hinze, 1975; Reeks, 1992):

QnmðsÞ � hu0nu0mie�s=sL;nm ; ðA:20Þ

where sL;nm is a Lagrangian integral time scale associated with the autocorrelation of fluid ve-
locities hu0nð0Þu0mðsÞi.
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